- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Kim, Daniel S (2)
-
Kundaje, Anshul (2)
-
Avsec, Žiga (1)
-
Banerjee, Abhimanyu (1)
-
Beier, Thorsten (1)
-
Byadgi, Ajay (1)
-
Cheng, Jun (1)
-
Gagneur, Julien (1)
-
Israeli, Johnny (1)
-
Kim, Daniel S. (1)
-
Kreuzhuber, Roman (1)
-
Liu, Xiao-Yang (1)
-
Nair, Surag (1)
-
Perricone, Jacob (1)
-
Shrikumar, Avanti (1)
-
Stegle, Oliver (1)
-
Tian, Felix (1)
-
Urban, Lara (1)
-
White, Matt (1)
-
Xiao, Kairong (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 14, 2025
-
Nair, Surag; Kim, Daniel S; Perricone, Jacob; Kundaje, Anshul (, Bioinformatics)Abstract Motivation Genome-wide profiles of chromatin accessibility and gene expression in diverse cellular contexts are critical to decipher the dynamics of transcriptional regulation. Recently, convolutional neural networks have been used to learn predictive cis-regulatory DNA sequence models of context-specific chromatin accessibility landscapes. However, these context-specific regulatory sequence models cannot generalize predictions across cell types. Results We introduce multi-modal, residual neural network architectures that integrate cis-regulatory sequence and context-specific expression of trans-regulators to predict genome-wide chromatin accessibility profiles across cellular contexts. We show that the average accessibility of a genomic region across training contexts can be a surprisingly powerful predictor. We leverage this feature and employ novel strategies for training models to enhance genome-wide prediction of shared and context-specific chromatin accessible sites across cell types. We interpret the models to reveal insights into cis- and trans-regulation of chromatin dynamics across 123 diverse cellular contexts. Availability and implementation The code is available at https://github.com/kundajelab/ChromDragoNN. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Avsec, Žiga; Kreuzhuber, Roman; Israeli, Johnny; Xu, Nancy; Cheng, Jun; Shrikumar, Avanti; Banerjee, Abhimanyu; Kim, Daniel S.; Beier, Thorsten; Urban, Lara; et al (, Nature Biotechnology)
An official website of the United States government
